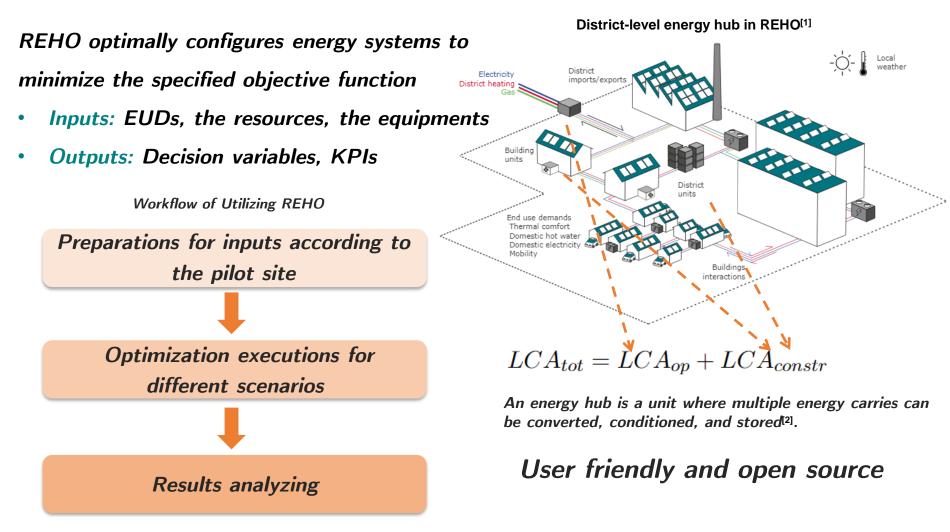


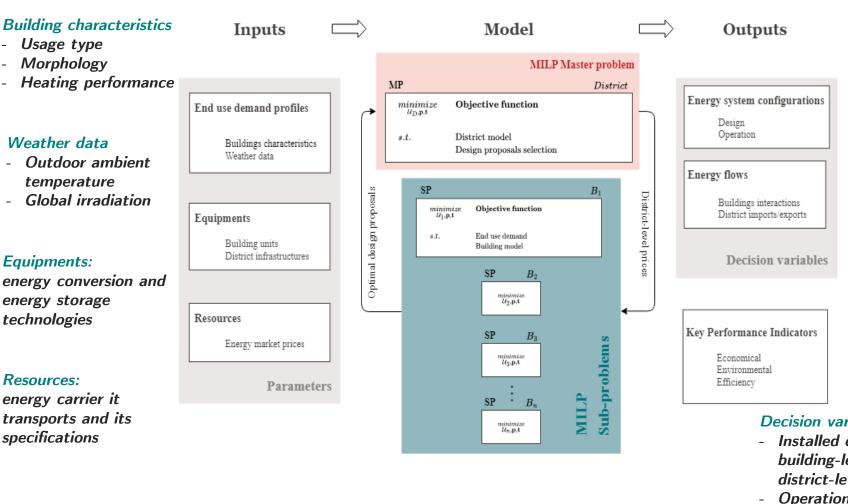
Integration of LCA framework into Renewable Energy Hub Optimizer (REHO)


Zhichuan MA Final presentation – Sept. 26, 2024

Meeting with: Prof. Simone Kotthaus Prof. Benoit Gabrielle

Introduction

Renewable Energy Hub Optimizer (REHO)


[1] Dorsan Lepour, Cédric Terrier, and Joseph Loustau. Renewable Energy Hub Optimizer (REHO) - A Comprehensive Decision Support Tool for Sustainable Energy System Planning

[2] M Geidl, G Koeppel, P Favre-Perrod, B Klockl, G Andersson, and K Frohlich. "Energy hubs for the future". In: IEEE Power and Energy Magazine 5.1 (Jan. 2007), pp. 24–30.

Zhichuan MA

Introduction

Renewable Energy Hub Optimizer (REHO)

REHO model architecture^[1]

Decision variables:

- Installed capacities for building-level and district-level units
- **Operation** time throughout a year

[1] Dorsan Lepour, Cédric Terrier, and Joseph Loustau. Renewable Energy Hub Optimizer (REHO) - A Comprehensive Decision Support Tool for Sustainable Energy System Planning

Zhichuan MA

Research Gap

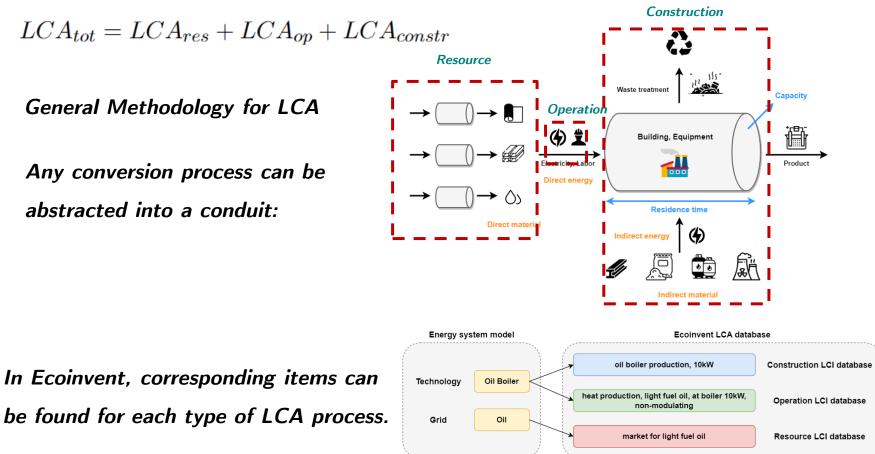
Nevertheless, there are still several issues existing in the current REHO regarding LCA

A more comprehensive and convincing LCA database

Current REHO LCA Model

A unified and more advanced LCA methodology

Lifecycle Assessment (LCA)


- 1. Lack of units for values and absence of declared data sources in LCA database
- 2. Inadequate methodological framework.
- 3. Need for a standardized LCA methodology to enable valid comparisons

Therefore, there is a strong need to integrate a better LCA framework into REHO.

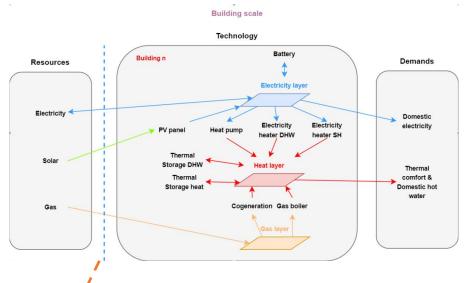
LCA Framework Integration

LCA formula 3 types of environmental impacts

 $LCA_{tot} = LCA_{op} + LCA_{constr}$

LCA Framework Integration

LCA resource

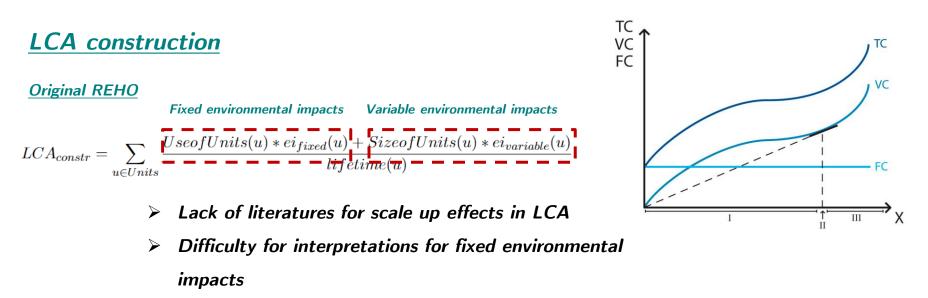

- Including the resource extraction stage allows us to capture the environmental impacts associated with the extraction of resources
- The LCA is performed by calculating the difference in energy carriers between grids and districts, then multiplying by the respective unit environmental impacts from the database.

$$EI_{sup}(l, u, t) = ei_{supply}(l, u, t) \cdot Network_{supply}(l, u, t)$$

$$EI_{dem}(l, u, t) = ei_{demand}(l, u, t) \cdot Network_{demand}(l, u, t).$$

$$LCA_{res} = \sum_{l \in ResourceBalances, u \in units, t \in Time} (EI_{sup}(l, u, t) - EI_{dem}(l, u, t))$$

Building scale example



 $Ei_{sup}(l,u,t)$ —is the total environmental impacts retrieved of unit u supply to the energy layer l at time t

 $Ei_{dem}(l,u,t)$ —is the total environmental impacts generated of unit u supply to the energy layer l at time t

Ei_{supply/demand}—the unit environmental impacts in LCA database, in this case, Ecoinvent

LCA Database Double Counting Removal

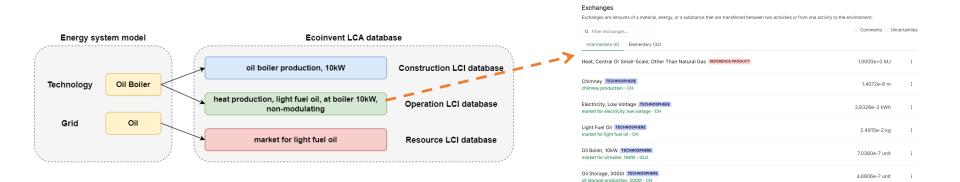
New methodology

$$LCA_{constr} = \sum_{u \in Units} \frac{SizeofUnits(u) * ei_{variable}(u)}{lifetime(u)}$$

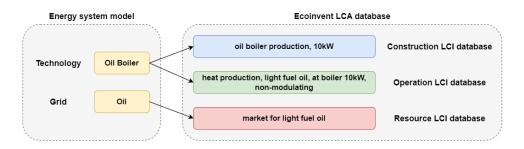
 LCA_{constr} — is the total environmental impacts for construction of units $ei_{variable}$ — is the unit variable environmental impacts extracted from Ecoinvent SizeofUnits(u) — the installed capacity of unit u lifetime(u) — the lifetime of the unit u

LCA Framework Integration

LCA operation


 $LCA_{op} = \sum_{l \in ResourceBalances, u \in Units, t \in Time} ei_{op}(u) * Units_Supply(l, u, t)$

Double Counting


needs to be removed!

LCA_{op} —— is the total environmental impacts for operation Units_supply (l,u,t)——is the total unit u's production in energy layer l within the time period t

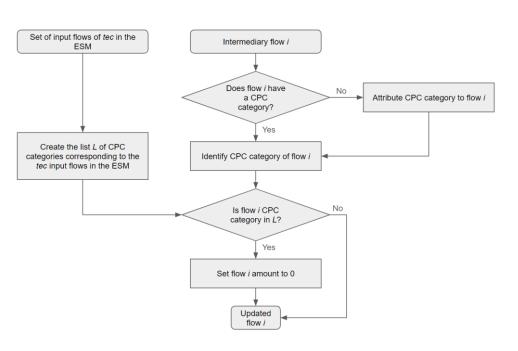
Double counting

Double counting removal

Exchanges

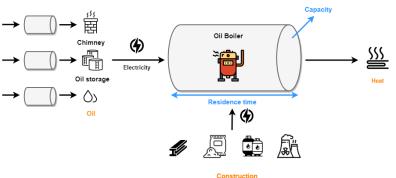
Exchanges are amounts of a material, energy, or a substance that are transferred between two activities or from one activity to the environment.

Q Filter exchanges	🗆 Comments 🗆 Uncertai	nties
Intermediate (6) Elementary (32)		
Heat, Central Or Small-Scale, Other Than Natural Gas REFERENCE PRODUCT	1.0000e+0 MJ	:
Chimney TECHNOSPHERE chimney production - CH	1.4072e-6 m	÷
Electricity, Low Voltage TECHNOSPHERE market for electricity, low voltage - CH	3.8328e-3 kWh	÷
		Resources
		Construction
Oil Storage, 3000I TECHNOSPHERE	4.6906e-7 unit	:


oil storage production, 3000I - CH

Zhichuan MA

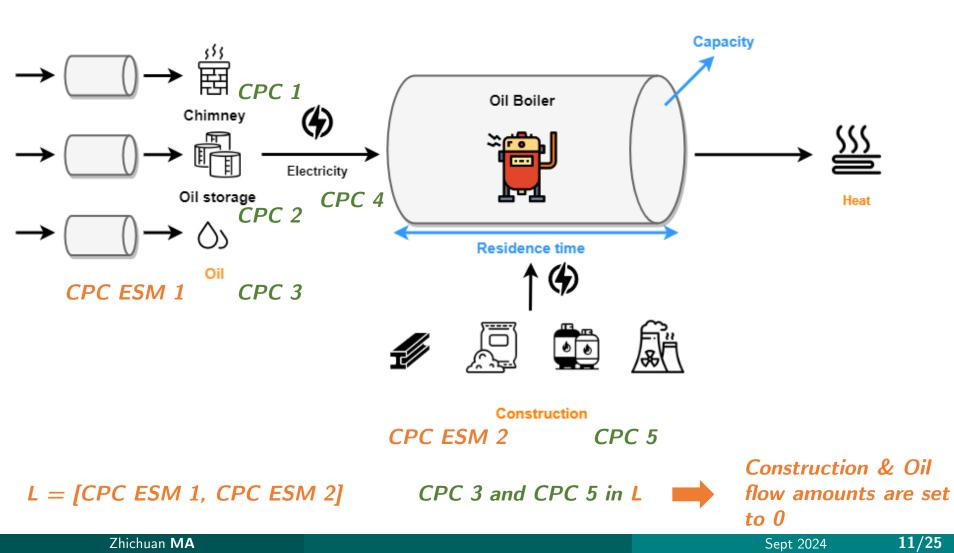
Double counting removal


The Central Product Classification (CPC) is a product classification for goods and services promulgated by the United Nations Statistical Commission.

Exchanges

Double counting removal flowchart^[1]

Exchanges are amounts of a material, energy, or a substance that are transferred between two activities or from one activity to the environment.					
Q Filter exchanges	Comments Unce	rtainties			
Intermediate (6) Elementary (32)					
Heat, Central Or Small-Scale, Other Than Natural Gas REFERENCE PRODUCT	1.0000e+0 MJ	:			
Chimney TECHNOSPHERE chimney production - CH	1.4072e-6 m	:			
Electricity, Low Voltage TECHNOSPHERE market for electricity, low voltage - CH	3.8328e-3 kWh	÷			
Light Fuel Oli TECHNOSPHERE market for light fuel oli - CH	2.4915e-2 kg	:			
Oil Boiler, 10kW TECHNOSPHERE market for oil boiler, 10kW - GLO	7.0360e-7 unit	:			
Oil Storage, 30001 TECHNOSPHERE oil storage production, 30001 - CH	4.6906e-7 unit	:			



[1] M. Souttre, Mescal — mescal. [Online]. Available: https://mescal.readthedocs.io/en/latest/index.html

ļ
1

Double counting removal

Oil Boiler Example

Double counting removal

Files mapping

[1]		import ML_mapping Executed at 2024.08.20 10:51:50 in 15s 359ms									
[2]		<pre>self = ML_mapping.Mapping(reference_classification='CPC 2.1',</pre>									
[3]	1 2 3	<pre>self.match_inputs(['OIL_Boiler']) self.calculate_scores() self.format_results() Executed at 2024.08.19 18:09:56 in 77ms</pre>									
	Ý	< < 5 rows -									
			order		code sector			÷	similarity ‡		
		OIL_Boiler		1			Gas oil		0.572717		
				2			Gas oil		0.572717		
				3		33370	Fuel oils n.e.c.		0.522871		
				4		3337	Fuel oils n.e.c.		0.522871		
				5		21671	Olive oil, crude		0.492022		

Generalization

		Impact category	Unit	Abbrev
		Climate change, ecosystem quality, long term	PDF.m2.yr	CCEQL
		Climate change, ecosystem quality, short term	PDF.m2.yr	CCEQS
		Climate change, ecosystem quality, long term, fossil and biogenic	PDF.m2.yr	CCEQLB
		Climate change, ecosystem quality, short term, fossil and biogenic	PDF.m2.yr	CCEQSB
		Climate change, human health, long term	DALY	CCHHL
\triangleright	Values In REHO database are without units	Climate change, human health, short term	DALY	CCHHS
-	Values in NEITO autabase are intitout ands	Climate change, human health, long term, fossil and biogenic	DALY	CCHHLB
\triangleright	No. ICA matheda daalaxad fax impost	Climate change, human health, short term, fossil and biogenic	DALY	CCHHSB
	No LCA methods declared for impact	Freshwater acidification	PDF.m2.yr	FWA
		Freshwater ecotoxicity, long term	PDF.m2.yr	
	categories	Freshwater ecotoxicity, short term	PDF.m2.yr	
		Freshwater eutrophication	PDF.m2.yr	
		Human toxicity cancer, long term	DALY	HTXCL
		Human toxicity cancer, short term	DALY	HTXCS
		Human toxicity non-cancer, long term	DALY	HTXNCL
		Human toxicity non-cancer, short term	DALY	HTXNCS
		Ionizing radiation, ecosystem quality	PDF.m2.yr	IREQ
		Ionizing radiation, human health	DALY	IRHH
		Land occupation, biodiversity	PDF.m2.yr	
	World IMPACT + and Brightway	Land transformation, biodiversity	PDF.m2.yr	
	fond init / Cr / and Digiting	Marine acidification, long term	PDF.m2.yr	
		Marine acidification, short term	PDF.m2.yr	
		Marine acidification, long term, fossil and biogenic	PDF.m2.yr	
		Marine acidification, short term, fossil and biogenic	PDF.m2.yr	
		Marine eutrophication	PDF.m2.yr	MEU
		Ozone layer depletion	DALY	OLD
		Particulate matter formation	DALY	PMF
		Photochemical oxidant formation	DALY	PCOX
		Terrestrial acidification	PDF.m2.yr	TRA
-	13 indicators to 29 indicators	Thermally polluted water	PDF.m2.yr	TPW
		Water availability, freshwater ecosystem	PDF.m2.yr	WAVFWES WAVHH
		Water availability, human health	DALY DDE m2 m	
		Water availability, terrestrial ecosystem Total ecosystem quality	PDF.m2.yr PDF.m2.yr	WAVTES TTEQ
		Total human health	DF.m2.yr DALY	TTHH
		Total ecosystem quality, fossil and biogenic	PDF.m2.yr	TTEQB
		Total human health, fossil and biogenic	DALY	TTHHB
		rotar numan nearth, iossir and biogenic	DALI	1 I IIIID

Normalization

<u>M00</u>

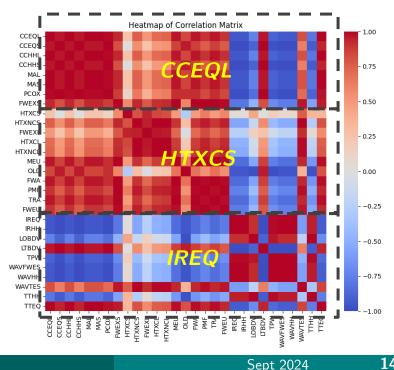
$$Objective = \sum w_i X$$

$$X_{normalized} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

> Xmin can be easily obtained by changing the objectives

i

> Xmax can be obtained by optimizing other objectives

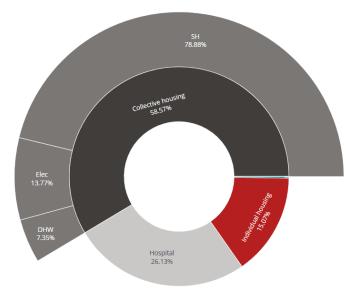

29 times for optimization

Pearson Correlation

$$r_{XY} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}}$$

The dataset has been grouped into three clusters using K-means, and their dynamic changes effectively reflect the overall variations in the dataset

3 times for optimization

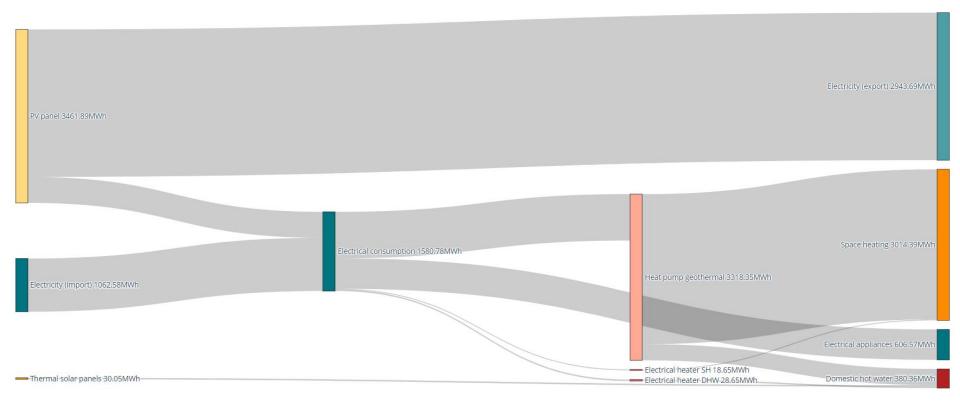


Case Study

Sion

Sion, a city in Switzerland, already has building datasets integrated within REHO. This makes it an ideal starting point for validating the new methodology and assessing its generalization capabilities.

Comparative Analysis Between the Old and New Methodology


- Scenario: 40 buildings in Sion, no requirements for equipments
- > Objective: minimize GWP
- The primary contributor to the EUDs is collective housing, which accounts for 78.88%. space heating(SH), 13.77% electricity (elec), and 7.00% domestic hot water (DHW)

In original REHO, most of the "fixed environmental impacts" are set to a small value like 0.0001, which can be replaced by operation LCA. Thus it allows us to compare different methodologies by fixing the dataset.

Sion

Both of the methodologies outcome the Sankey below:

This outcome implies that both methodologies yield the same optimal configuration of the same district energy system*

Sion

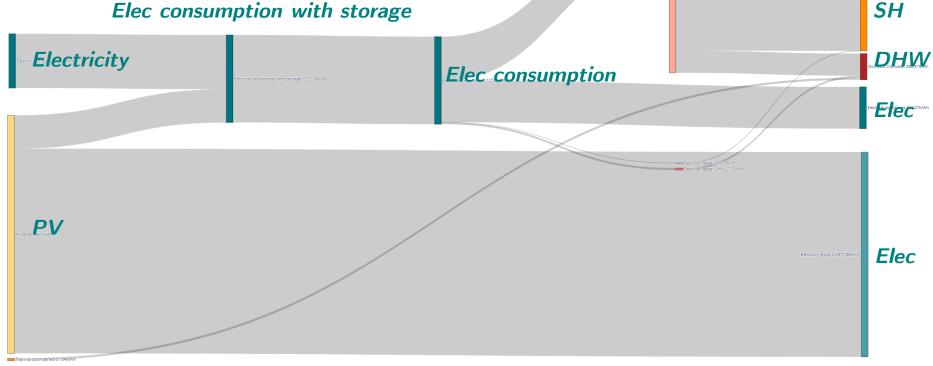
Old Methodology:

O simplex iterations		
GWP	GWP_op	GWP_constr
0 -122008.748889	-244549.6937	122466. 0784

New Methodology:

0 simplex iterations	-		
GWP	GWP_op	GWP_constr	GWP_res
0 -121598.471405	346. 1894292	122459.106	-244549.6937
0 1210/0.4/1400			1

As expected, the final numerical result is different


> The configuration is the same

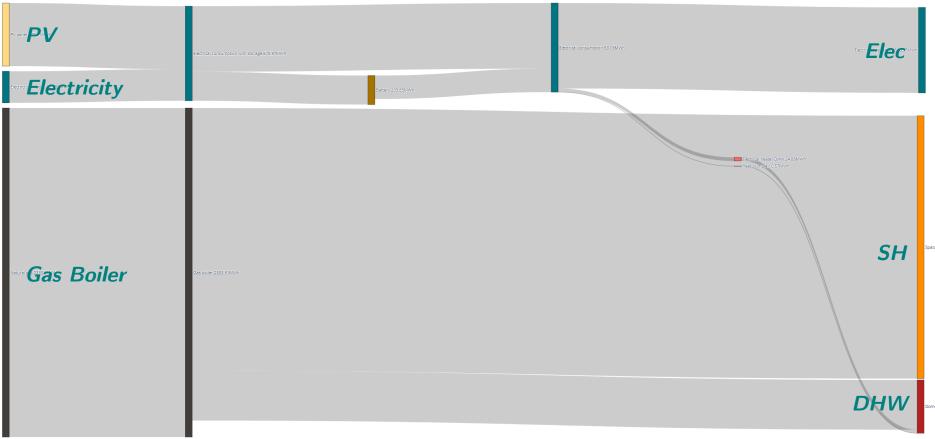
The LCA methodology is successfully integrated

- The GWP_op from the old methodology is the same with the GWP_res in new methodology
- > GWP constr is different for different ways of calculating construction

Case Study Sion Generalization Objective: GWP Elec consumption with storage

ThermalSolar

This demonstrates that when optimizing for GWP, photovoltaic (PV) systems are extensively utilized, while fossil-based technologies are excluded in order to minimize global warming potential. The GWP result is around -96, 136kg CO2


Zhichuan MA

Case Study

Sion

<u>Generalization</u> Objective: LOBDV

Elec consumption with storage

The energy system limits the use of PV panels due to their large environmental impacts on land occupation. Instead, gas boilers are widely used to provide heat, reducing the reliance of electricity on heat pumps that would otherwise require significant land area to operate.

Zhichuan MA

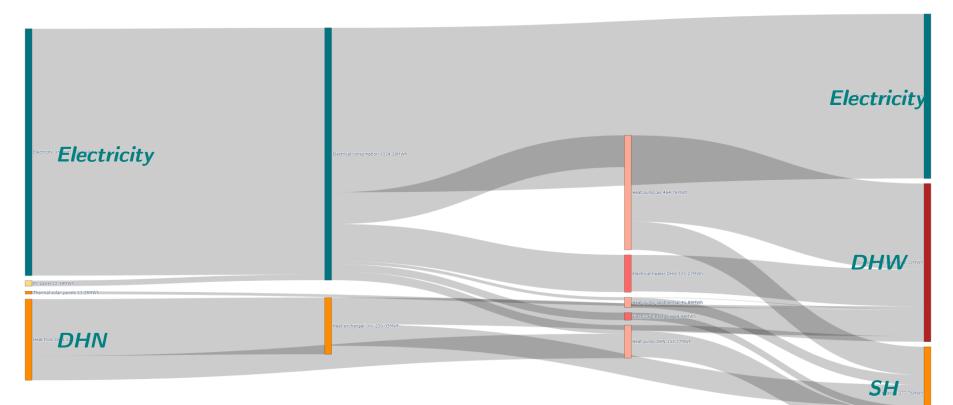
Case Study

Lugaritz-Matía Community in Spain

After integrating the LCA framework successfully, a real case study is conducted:

- Composed of 3 buildings:
 - > Birmingham Hospital
 - > Rezola Nursing Home
 - > Lugaritz Nursing Home

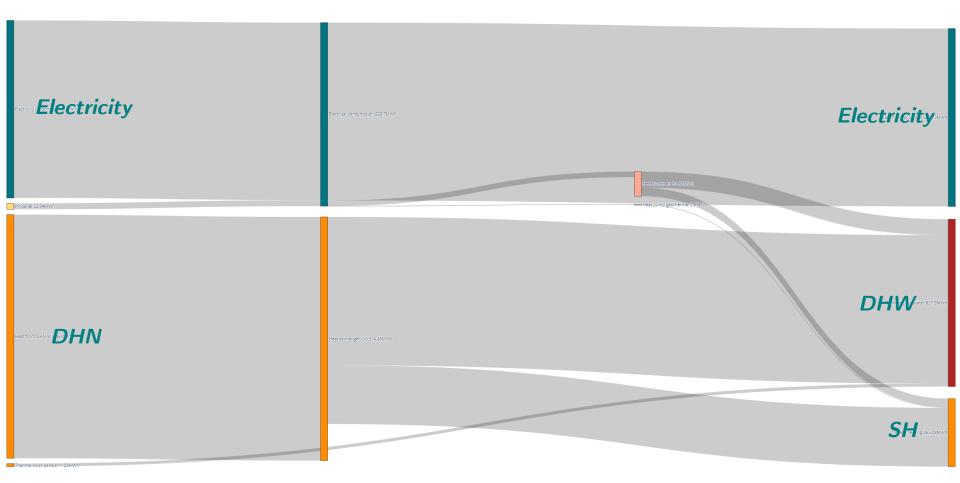
- 2 Case Study are conducted:
- ✓ Simulation of current energy system;
- ✓ Optimization for fossil-free scenario.



Lugaritz-Matía Community in Spain

Current scenario simulation (with original dataset)

In the current scenario, multiple technologies' capacities are fixed based on datasets from the pilot, including:


'HeatPump_Air', 'HeatPump_Geothermal', 'NG_Boiler', 'OIL_Boiler', 'ThermalSolar', and 'PV'. And district heating network (DHN) is used.

This energy system primarily uses electricity to power heat pumps in order to produce heat and meet the demand

Lugaritz-Matía Community in Spain

Current scenario simulation (with new dataset)

This energy system primarily directly uses DHN to produce heat and meet the demand

Lugaritz-Matía Community in Spain

Comparison

The root cause of this behavioral difference is that, in the original dataset, heat is more expensive than electricity in terms of GWP, whereas the new database does not reflect this

Home / market for electricity, low voltage

market for electricity, low voltage

/ersion Sy	stem model	Activity name	Geog	raphy	Reference product
3.8 ~	cutoff 、	market for electricity, low voltage	~ CH	+ ~	electricity, low voltage
Documentation	Impact Assessment				
Exchanges	The impact scores of the se	lected activity are calculated using the selected LC	CIA method. Expand a row to view th	e contributo	rs to each score.
-	LCIA Method				
Consuming activities	IPCC 2013				
LCI results	IMPACT CATEGORY	INDICATOR	IMPACT SCORE	UNIT	
Impact assessment	climate change	GTP 100a	4.0919e-2	kg CO2-Eq	~
Export	climate change	GTP 20a	5.1350e-2	kg CO2-Eq	° •
	climate change	GWP 100a	4.4991e-2	kg CO2-Eq	~
	climate change	GWP 20a	5.4055e-2	kg CO2-Eq	~

Home / market for heat, district or industrial, natural gas

market for heat, district or industrial, natural gas

Version S	ystem model	Activity name	Geo	ography	Reference product
3.8 ~	cutoff 🗸 🗸	market for heat, district or industria	al, natural gas 🗸 🗸	сн 🗸	heat, district or industrial, I \sim
Documentation Exchanges Consuming activities	LCIA Method	cted activity are calculated using the selecte	d LCIA method. Expand a row to view	the contributors	to each score.
-	IPCC 2013				*
LCI results	IMPACT CATEGORY	INDICATOR	IMPACT SCORE	UNIT	
Impact assessment	climate change	GTP 100a	2.5796e-2	kg CO2-Eq	~
Export	climate change	GTP 20a	3.4245e-2	kg CO2-Eq	~
	climate change	GWP 100a	2.9079e-2	kg CO2-Eq	~
	climate change	GWP 20a	3.6471e-2	kg CO2-Eq	~


GWP100a: 4.4991*e^(-2)

GWP100a: 2.9079*e^(-2)

> Due to the direct and more efficient use of heat, the GWP of heat is indeed lower than that of electricity, as is also evident from the Ecoinvent database

Lugaritz-Matía Community in Spain

Fossil-free scenario

Photovoltaic (PV) panels have fully replaced fossil fuel-based technologies in the energy system. Over the course of a year, the PV system generates 369.67 MWh, with a portion used for electricity, while 284.61 MWh supports domestic hot water and space heating.
 DHN still plays an major role in satisfying the heat demand.

Zhichuan MA

Discussions & Conclusions

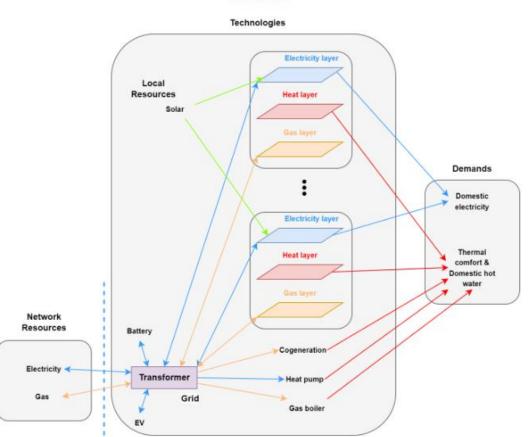
Accomplishments and Areas for Improvement

Accomplishments

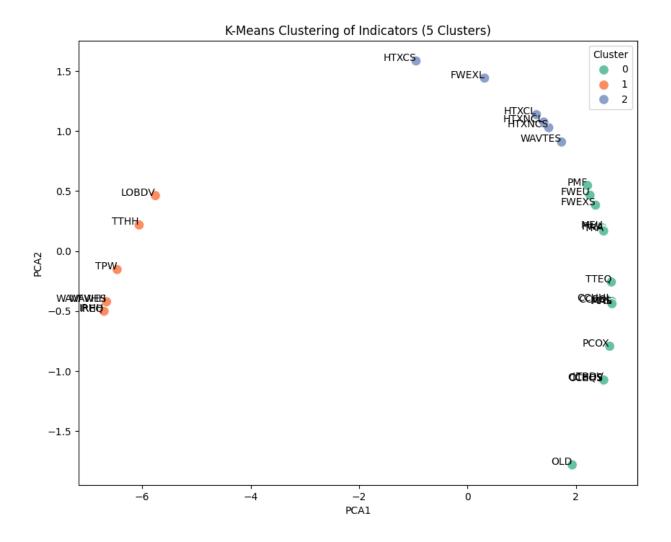
- Implementation of a New LCA Methodology
- Improvement in Data Accuracy (Generalized and Double counting removed LCA database)
- > Normalization
- Integration and Validation of the New LCA Framework
- Real-World Application and Insights

Areas for Improvement

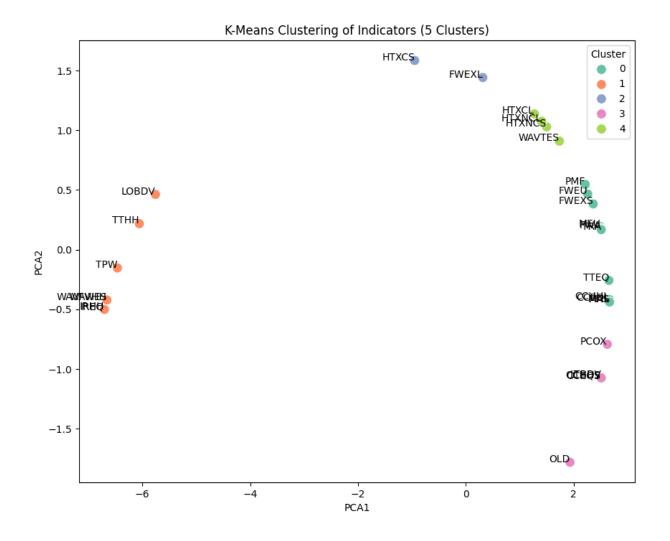
- > Data Availability Gap
- District Heating Network Generalization Challenges
- Double Counting Removal Database Globalization


THANK YOU FOR YOUR ATTENTION!

For all the relevant codes, please refer to: <u>https://github.com/zhichuanma/REHO/tree/LCA_integration</u>


Appendix

District level energy system


District scale

PCA 3 clusters

PCA 5 clusters

Appendix

VEO Spain pilot datasets-1

	PARAMETERS	HISTORICAL	Berminghan	Rezola	Lugaritz
NAME	Building identifier	NO	BER	REZ	LUG
TYPE	Building type	NO	Hospital	Nursing home	Nursing home (54 apartments + 40 day beds) + Office building
ADDRESS	Town or address	NO	San Sebastián, Basque Country (Spain)Matia - Bermingham Ospitalea	an Sebastián, Basque Country (Spain)Centro Gerontológico Julián Rezol	
ADDRESS					
COORDINATES	Latitude	NO	43,3038	43,3034	43,3045
	Longitude	NO	-2,0014	-2,0031	-2,0024
NOTE	If any additional information is needed	NO	The DH is located in Lugaritz building	The DH is located in Lugaritz building	The DH is located in Lugaritz building
	Floor number	NO	9	4	7
	Height up to the last ceiling [m]	NO	24,65	11	19,5
GEOMETRY	Floor area [m2]	NO	18 000	Floor 0: 1,459.42; Floor 1: 1,589.35;Floor 2: 1,517.53; Floor 3: 742.92	8,269.87; Floor 2: 3,214.9; Floor 3: 3,335.5; Floor 4: 3,244.18; Floor
	Vertical facades area [m2]	NO	25 932	1 235	6 424
	Vertical windows area [m2]	NO	300	68	163
	Solar vertical facades area [m2]	NO	12 966	600	3 200
	Solar roof area [m2]	NO	330	800	220
	Construction period [y]	NO	2011	1989	2023
	Yearly electricity demand [kWh/y]	NO	368,000 for heating	N/A	30 for cooling
	Yearly heating demand [kWh/y]	NO	1 352 000	979 000	910 000
EPB	Yearly DHW demand [kWh/y]	NO	425 000	246 000	56 940
	Averaged thermal transmittance [kW/m2·K]	NO	Facade: k=0.66 Roof: k=0.38	Facade: k=1.8 Roof: k=1.4	Facade: k=0.27 Roof: k=0.22
	Thermal specific capacity [Wh/m2·K]	NO			
		NO	[Hospital, Swimming pool]	Residential (Collective housing)	[Residential (Collective housing), Administrative]
USAGE	Percentage of each utilisation [%]	NO	[87.5, 12.5]	100	[70, 30]
00/102	Average users of the building	NO	336	143	148
	Electrical appliances consumption (Low, Medium, High)	NO	High	High	High
	Heating technology (indicate all available)	NO	[DH(Biomass, Condensing boiler), Conv. boiler, ASHP, Solar thermal]	[DH(Biomass, Condensing boiler), Conv. boiler, Condensing boiler]	[DH(Biomass, Condensing boiler), GSHP, Chiller recov.]
	Heating technology power [kW]	NO	[DH(500+300, 620+620), 270+270+270, 16, 40x0.4]	[DH(500+300, 620+620), 270, 115]	[DH(500+300, 620+620), 160, 14.5]
	Heating technology energy [kWh] (include link to time seri	YES	Datos Berminghan desde SCadaDatos Lugaritz desde SCada	Datos Rezola desde SCada Datos Lugaritz desde SCada	Datos Lugaritz desde SCada
	Heating storage volume [m3]	NO	2x2[DH(4, N/A), N/A, N/A, 2.5]	[DH(4, N/A, N/A, N/A), N/A, N/A]	3.1[DH(4, N/A, N/A, N/A)]
	Heating storage maximum power [kW]	NO			
	Heating storage capacity [kWh]	NO			
	DHW technology (indicate all available)	NO	[DH(Biomass, Condensing boiler), Conv. boiler, ASHP, Solar thermal]	[DH(Biomass, Condensing boiler), Conv. boiler, Condensing boiler]	[DH(Biomass, Condensing boiler), GSHP, Chiller recov.]
	DHW technology power [kW]	NO	[DH(500+300, 620+620), 270+270+270, 16, 40x0.4]	[DH(500+300,620+620),270,115]	[DH(500+300, 620+620), 160, 14.5]
	DHW technology energy [kWh] (include link to time series]	YES	Datos Berminghan desde SCadaDatos Lugaritz desde SCada	Datos Rezola desde SCada Datos Lugaritz desde SCada	Datos Lugaritz desde SCada
	DHW storage volume [m3]	NO	2x2[DH(4, N/A), N/A, N/A, 2.5]	2x0.8[DH(4, N/A), N/A, N/A]	3.1[DH(4, N/A), N/A, N/A]
TUEDMAN	DHW storage maximum power [kW]	NO			
THERMAL	DHW storage capacity [kWh]	NO NO	N/A	N/A	[Chiller, GSHP]
	Cooling technology (indicate all available)	NO	N/A N/A	N/A N/A	[Chiller, GSHP] [218, 141]
	Cooling technology power [kW]	YES	N/A N/A	N/A N/A	[218, 141] Datos Lugaritz desde SCada
	Cooling technology energy [kWh] (include link to time serie	NO	N/A N/A	N/A N/A	1.5[N/A, N/A]
	Cooling storage volume [m3] Cooling storage maximum power [kW]	NO	N/A N/A	N/A N/A	1.5[N/A, N/A] N/A
		NO	N/A N/A	N/A N/A	N/A N/A
	Cooling storage capacity [kWh] Target or ideal internal temperature [°C]	NO	N/A 21 (Winter) / 25 (Summer)	N/A 21 (Winter) / 25 (Summer)	N/A 21 (Winter) / 25 (Summer)
		NO			
	Heating supply temperature [°C]	NO	80 (Winter) / 70 (Summer)	80 (Winter) / 70 (Summer)	80 (Winter) / 70 (Summer)
	Heating return temperature [°C]	NO	60 (Winter) / 50 (Summer)	60 (Winter) / 50 (Summer)	60 (Winter) / 50 (Summer)

VEO Spain pilot datasets-2

	·				
	Cooling supply temperature [°C]	NO	7	7	7
	Cooling return temperature [°C]	NO	12	12	12
	Waste heat sources (indicate all available)	NO	N/A	N/A	Heat recovery from chiller / Heat recovery from air extraction
	Heat transfer fluid to be recovered (Liquid water, Steam, A	NO	N/A	N/A	Water / Air
	Heat transfer fluid temperature [°C] (include link to time se	YES	N/A	N/A	<u>35-40</u> Datos Lugaritz desde SCada
	Heat transfer fluid pressure [bar]	NO	N/A	N/A	1
HEAT/RECOVERYTECHNO	Heat transfer fluid flow (include link to time series)	YES	N/A	N/A	Datos Lugaritz desde SCada
	Distance between heat source and final use	NO	N/A	N/A	
	Space available next to the heat source	NO	N/A	N/A	
	Recovery technologies already installed (indicate all availat	NO	N/A	N/A	DH(Chiller heat recovery)
	Recovery technology power [kW]	NO	N/A	N/A	10
	Recovery technology energy [kWh] (include link to time se	YES	Datos Berminghan desde SCadaDatos Lugaritz desde SCada	Datos Rezola desde SCada Datos Lugaritz desde SCada	Datos Lugaritz desde SCada
	Electricity consumption profile [kWh] (include link to time	YES	N/A	N/A	N/A
	PV capacity [kW]	NO	N/A	N/A	16 335
	PV production [kWh] (include link to time series)	YES	N/A	N/A	17,839 Datos Lugaritz desde SCada
	Wind turbines capacity [kW]	NO	N/A	N/A	N/A
	Wind turbines production [kWh] (include link to time serie	YES	N/A	N/A	N/A
	Battery maximum discharge power [kW]	NO	N/A	N/A	N/A
	Battery capacity [kWh]	NO	N/A	N/A	N/A
ELECTRIC	Battery minimum SoC fixed [%] / [kWh]	NO	N/A	N/A	N/A
	Battery maximum SoC fixed [%] / [kWh]	NO	N/A	N/A	N/A
	Battery SoC [%] / [kWh] (include link to time series)	YES	N/A	N/A	N/A
	EV charger power [kW]	NO	N/A	N/A	N/A
	EV battery capacity [kWh]	NO	N/A	N/A	N/A
	EV minimum SoC fixed [%] / [kWh]	NO	N/A	N/A	N/A
	EV maximum SoC fixed [%] / [kWh]	NO	N/A	N/A	N/A
	EV SoC [%] / [kWh] (include link to time series)	YES	N/A	N/A	N/A
	Other [?]	NO	N/A	N/A	N/A
	Feed-in tariff rate [€/kWh]	NO	N/A	N/A	N/A
GRID	Energy price of the community member [€/kWh]	NO	N/A	N/A	N/A
GRID	Grid tariffs / network costs [€/kWh]	NO	N/A	N/A	N/A
	Type of trading allowed if any	NO	N/A	N/A	N/A
	1				1